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Abstract-This paper computes the electrical conductivity of a fully ionized, spatially homogeneous 
plasma under the influence of a uniform, periodically alternating electric field. The velocity distribu- 
tion of the electrons is determined by solving the linearized Fokker-Planck equations. All the terms 
in the collision integral are retained, including those representing electron-electron interactions. 
The resultant values of conductivity is expected to be valid in the range of frequencies from zero to 

1. INTRODUCTION 

5 

below the plasma frequency. Jg&>h 
The purpose of this paper is to calculate the a.c. conductivity of a spatially homo- 

geneous plasma using the Fokker-Planck equation. The d.c. conductivity of a plasma 
has been calculated in the well-known works of COHEN et al. (1950) and SPITZER Jr. 
and HLRM (1953). Their results are in good agreement with the later experimental 
works of LIN et al. (1955). BERNSTEIN and TREHAN compute the a.c. conductivity 
assuming a Lorentz gas model (1960). The a.c. conductivity of a real gas should 
approach that of a Lorentz gas at high frequencies (see detailed discussions in Section 
4). Toward lower frequencies their departure is expected to increase so that their 
ratio becomes nearly 2 in the d.c. limit, in accordance with COHEN et al. and SPITZER 
and HARM. The recent works on a.c. conductivity by DAWSON and OBERMAN (1962) 
consider the time variation of the two-particle distribution, which is necessary when 
dealing with a.c. currents of ultra-high frequencies. However, the domain of applica- 
bility of their work is limited to frequencies much higher than the collision frequency. 
Thus, a more precise calculation for the low and intermediate range of w appears 
desirable and we proceed to do this in accordance with methods to be described in the 
next section. After completion of most of the numerical work, a paper by ROBINSON 
and BERNSTEIN (1962) came to our attention. They computed the a.c. conductivity 
using a variational technique. Our results obtained by direct integration of the 
Fokker-Planck equation will be compared to theirs in Section 4. 

We begin with the Boltzman equation: 

where fi is the distribution function of particles of type i, ($1 is the change off, 
produced by collisions. 

Equation (1) is deduced from Liouville theorem to describe a many-particle 
system under two assumptions: 

(i) That the characteristic dimensions of the inhomogeneities are much larger 
than the average impact parameter for the particles participating in the collision. 
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order w p l .  In Fig. 1 a time-scale diagram is drawn, and the validity of our calculation 
and those of DAWSON and OBERMAN are indicated. 

The explicit expression of (;Ic depends on the nature of the interaction force. 

In a fully ionized plasma, the particles interact through the long-range Coulomb 
forces. The cumulative effect of 'weak' deflexions resulting from the relatively 
distant collisions outweighs the effect of occasional large deflexions due to relatively 
close collisions, so one may neglect the contribution by those very close encounters 
(COHEN et a/.)-encounters which result in deflexions of 90" or larger. 

Also, the effect of distant particles lying outside the Debye length 1, may be 
neglected because of the shielding of inner particles. Thus, in the computations of ($1; it is only necessary to consider the collisions with impact distance intermediate 

between AD and bo, where b - - is the impact parameter yielding a 90" deflexion. 

The effects of these collisions are cumulative, and the total deflexion produced in an 
interval of time is similar to that of the Brownian motion; hence, one may expand (;Ic in powers of (Av), where (Av) is the average velocity change due to collisions 

(COHEN et al., CHANDRASEKHAR, 1943). This procedure leads to the following Fokker- 
Planck collision integral (ROSENBLUTH et a]., 1957) : 

e2 

O - K T  

I 

~ 

(ii) That the characteristic time variation of the process is much longer than the 
duration of an average collision, or in other words, a collision is completed and the 
correlation function is 'relaxed' before the distribution function itself makes any 
appreciable change. 

It should be noted here that the term 'duration of collision' is different from the 
so-called 'collision time'; collision time is the time between two collisions. For 
particles interacting through long-range forces, this time may be regarded as the time 
in which deflexions gradually deflected the considered particle by 90". Duration of 
collision is the time during which an interaction takes place. In a plasma it is of the 

+ Region one< i 
I 

"J P 

OC I a 

CU + +Region two- I 
FIG. 1 .-The ranges of validity computed a.c. conductivities. 

The values of a.c. conductivity obtained in this paper is valid in region one. When 
w exceeds o,-region two-the values calculated by DAWSON and OBERMAN begin to 
be valid. 

Here o, is the collision frequency, w, is the plasma frequency. 
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I .  

where 

and 

The summation in h, and g sums over all species, M, is the mass of the i-th species, 

e is the electronic charge, I., = (,fi,T,z)' - is the Debye length, and Cth is the relative 
thermal velocity. 

In this paper we consider only plasma with singly-charged ions. The extension of 
the present method to those with multiply-charged ions is straightforward. 

2. DERIVATION OF EQUATIONS AND FORMULAE 

If the distribution functionfhas an azimuthal symmetry about a certain axis, then, 
following ROSENBLL'TH el QI., the collision term may be written down explicitly in 
spherical polar co-ordinates in velocity space: 

where p = cos 8 is the direction cosine between v and E. Equation (6) is an exact 
expression of the Fokker-Planck equation in spherical co-ordinates for a distribution 
function with azimuthal symmetry. 

We assume that the system is subject to a weak electric field E,eiwt whose direction 
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lies along z-axis. Then following CHAPMAN and COWLING (1939) and SPITZER Jr. 
we expandf, in a power series of E: 

where f i ( 0 ) ( o )  is a time-independent Maxwellian distribution and f(l)(v, t ) ,  f(2)(v, t ) ,  
. . . . . . are the perturbed part due to applied electric field. When a steady state has 
been reached and no transient current exists, the time-dependent part off,(j)(v, t )  must 
be proportional to eiWt. Since the average energy imparted to the electrons between 
encounters is small compared with their kinetic energy, the velocity-dependent part of 
A(j)(v, t )  can be written as e-[m~u2/2~t’DZ(j)(o)~. Therefore, we have 

fL(v, t )  =f,‘o’(u) + Eof,(l’(v, t )  + E,2p(v ,  t )  + . . . . * (7) 

Combining equations (l), (6) and (7) keeping only terms linear in E,,, we obtain 

I 
where (df,/dt),(l) is the linearized Fokker-Planck collision integral. 

Since the ions’ contribution to electric current is negligible compared to electrons, 
we will consider only electron distributions and drop the subscript i in the distribution 
function hereafter. 

Substituting equation (8) into equation (9) we find, after some algebraic manip- 
ulations, the following second-order linear integral-differential equation : 

where 
D ” ( x )  + P(x)D’(x)  T Q ( x ) D ( s )  = R(x)  + S(x) (10) 

1 2x2@’(x) 
P ( x )  = - 2 x  - - -t ~ 

x H ( x )  

2 du’ 8(24s6 ~ 2x4) 
H ( x )  372 “ H (  x )  

R ( x )  = - - - l o (  a) 

(“l,(S) - 1 . 2 S l 5 ( X )  - .?l0(x)(l 16 
3 ~ ” ~ H ( . u )  

S(X) = 

@(x) = [“ e-” dy 
- 0  

H ( x )  = @(x) - X @ ’ ( X )  

with 
cy. = -EoKT/ne3n In i. 2 = In/b0 
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where wC is approximately the 90’’ deflexion time of a partick with thermal velocity. 
When 0. = 0, equation (IO)* reduces to equation (8) of SPITZER Jr. which considers 
d.c. electric conductivity. 

In a d.c. electric field, the electrons are not accelerated in a steady state. Hence, 
3xf  

8 
the inertia force term is zero and Io(co) = - Q. 

3. SOLUTION OF EQUATION 
Equation (10) is a linear integraldifferential equation whose unknown D(x) is a 

complex function of a real variable. The present section will discuss the method of its 
solution. As will be evident in what follows, the procedure for numerical integration 
is far from straightforward. 

On the one hand, we encounter the problem of the instability of the solution at 
small and at large x. Because of the existence of singularities in equation (10) at 
x = 0 and at x = my a slight deviation of D(x) at either small or large x, tends to be 
built up quite rapidly. In order to obtain a physically acceptable solution, it is 
required that D(x) does not approach infinity too fast, leading to infinite conductivi- 
ties. The starting value of D at small s can be obtained by means of a series solution. 
Because of the instability, we cannot proceed to integrate in a stepwise manner. To 
overcome this difficulty, we adopted a scheme used by COHEN et al. We shall refer to 
their paper for full details. 

On the other hand, we note that Io( co) is no longer a known quantity as it is in the 
case of d.c. conductivity; it depends on the solution D(x) itself. We proceed as 
follows: Since we want conductivities at different frequencies, it is necessary to 
obtain solutions for different values of the parameter B. We begin with a small value 
B = 0-05. Using an Io(co) taken from the d.c. case, i.e. Io(co) = 0.655, we obtain a 
solution to equation (10) from which we get a new Io(co). Next, we pass on to B = 0.1 
using the Io( co) obtained for the previous B. In this way, we proceed to ever-increasing 
values of B, until the initial adopted Io( co) and the final calculated Io( m) differ by no 
more than 2 per cent. This occurs at B = 1.37. From this point on, we resort to a 
method of systematic trials. The initial and final lo(cc) for all values of B agree to 
within 2 per cent, which is considered sufficiently accurate for the present purposes. 

4. RESULTS A N D  DISCUSSION 

The current is given by 

dwf,(v, t )  = AE&’”‘I,(co) 

where 

* Note that &(a) is essentially the total change of momentum of electrons arising from electron- 
ion interactions. Since the mutual electronic interaction cannot change the total momentum of 
the electrons, fo(a), by Newton’s second law, must equal the total force exerted on the electrons by 
the applied field minus the inertia force of electrons. This relation gives us: 

37rt iB 
fo(a2) = - a - - f  3 ( .c). 8 

5 
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Since $ = 08, we have the complex conductivity 
0 = A13(co), 

C -- - the impedance 1 z=- 
A I d a )  Ida) ' 
1 ReZ (a) cReZ,( co) 

A IIda)12 IIda)12 ' 

. A 113(00)12 IIda)I2 ' 

the resistance 
R = - A -  - 

1 ImZ (a) cfrnl , (co)  x = - L =  and the reactance 

with 

It may be remarked here that the a.c. conductivity depends on three factors: 
(i) The inertia of the conducting electrons. 
(ii) The mutual interaction among electrons and ions. 
(iii) The mutual interaction among electrons themselves. 
The mutual electronic interactions have no direct effect on conductivity since the 

total change of momentum due to such interactions is zero. Nevertheless, they alter 
the distribution of electrons and thereby modify the effect which electron-ion collisions 
and electron inertia have in impeding the current. When o is small, the conductivity 
is primarily determined by collisions. The inclusion of electron-electron interactions 
reduces the conductivity by a factor of approximately two. As (1) increases and 
becomes of order o,, this effect becomes less and less important because there is then 
insufficient time in each a.c. cycle to allow an effective modification of the distribution 
by electron-electron interactions. When o well exceeds o,, we may neglect this 
effect and D ( s )  reduces to 

(25) 
x4 

iB 
2 

DLX) = 
1+-- ,  

and the corresponding conductivity becomes 
w x7c-"z 

dx 
i B  
2 

lJ1(x) = A 
1 + - - ,  

which is just the a.c. conductivity of a Lorentz gas (BERNSTEIN and TREHAN). 

treat collision effect as a perturbation and obtain 
If we further increase co, the inertia of electrons become dominant. Then we may 

(8 + 3 ~ l ' ~ i B )  
1 4B2 z =-  

O0 A 6 4  + 9rB2 

A 9n 

1 
A 

X ,  = - 1 2 ~ " ~ B  

(27) 
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w,  in 1 TABLE  VA VALUES OF D(x) FOR w = w, AND o = 0 a, 5 - 
4V'ZA 

w = w, w = o  

0.10 
0.1 1 
0-12 
013 
0.14 
0.15 
0.16 
0.1 7 
0-18 
0.19 
0.20 
0.2 
0.24 
0.26 
0.28 
0.30 
0-32 
0.34 
0-36 
0.38 
0.40 
0.44 
0-48 
0-52 
0-56 
0.60 
0.64 
0.68 
0.72 
0.76 
0.80 
088 
0.96 
1.04 
1.12 
1 -20 
1-28 
1.36 
1 -44 
1.52 
1-60 
1 *76 
1-92 
2.08 
2.24 
2.40 
2.72 
2-88 
3.04 
3.20 

0.0005887 
00009252 
0401376 
0-001956 
000268 
0-00356 
0-00461 
0.00583 
0.00724 
0-00884 
0.01063 
0.01483 
0.01985 
0-0257 
0.0324 
0-04oO 
0.0483 
0-0575 
0.0675 
0.0783 
0.0899 
0-1153 
0.1435 
0-1744 
02080 
0.2439 
02882 
0.3227 
0-3652 
04096 
04559 
0.5535 
0.6570 
0.7656 
0.8782 
0.9937 
1.111 
1-2290 
1.3457 
1.4598 
1.5693 
1-7657 
1.1915 
1.9973 
1.9913 
1.8852 
1.4266 
1.2198 
1.3105 
2-1113 

-0*0002029 
-00003438 
-0.000542 
-0.0008068 
-0.001149 
- 0.001 58 
-000210 
- 0.00272 
-0.00346 
-0.00431 
-0.00528 
-0.00761 
-0,01048 
-0.01 39 
-0.0180 
-0.0226 
-0.0279 
-0.0339 
-0'0405 
-0.0478 
-00557 
-0.07366 
-099436 
-0.1179 
-0.1442 
-0.1734 
-02055 
-0.2405 
-02785 
- 0.3196 
-0.3637 
-0.4813 
- 0.571 8 
-0.6957 
-0.8335 
-0.9858 
-1.1531 
-1.3359 
-1.5347 
-1.7500 
- 1.9820 
-2.4962 
- 3.0739 
- 3.7049 
-4.3694 
-5.0382 
-6.2407 
-6.6809 
-68066 
-5.6758 

D ( X )  

0.0008093 
0-001 300 
04J01970 
0.002847 
0-003955 
0005317 
0.006955 
0.008886 
0-01113 
0.01370 
0-01660 
0.02347 
0.03 180 
0.041 65 
0-05304 
0.06601 
0.08057 
009672 
0.1 145 
0-1 338 
0-1548 
0-201 5 
0.2545 
0.3137 
0.3792 
0.4508 
0.5285 
0.6123 
0.7023 
0.7983 
0.9005 
1.123 
1.371 
1.645 
1-945 
2.273 
2-630 
3.017 
3-435 
3.887 
4375 
5.465 
6728 
8.190 
9-880 

11.83 
16.62 
1953 
22-74 
26.00 

395 
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TABLE 2.-THE CONDUCTIVITY, THE RESISTANCE AND THE REACTANCE OF a.C. CURRENT 

wio, 

0.0 
0.05 
0.1 
0.15 
0.2 
0.25 
0.3 
0.35 
0.4 
0.45 
0.5 
0.55 
0.6 
0.65 
0.7 
0.75 
0.8 
0.85 
0.9 
0.95 
1 .o 
1 .1  
1.2 
1.3 
1.4 
1.5 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 

10.0 

Real gas 

1.734 
1.729 
1.713 
1.687 
1.651 
1.608 
1.561 
1.510 
1.458 
1.406 
1.354 
1.303 
1.255 
1.208 
1.164 
1.122 
1.082 
1.045 
1.009 
0.976 
0.944 
0.886 
0.834 
0.786 
0.743 
0.721 
0.560 
0.408 
0.313 
0.255 
0.214 
0.183 
0.162 
0.144 
0.130 

__ 
Lorentz gas Real gas 

~ 

3.0 
2.880 
2.653 
2.430 
2.233 
2.061 
1.913 
1.784 
1.671 
1.572 
1.483 
1.405 
1.334 
1.270 
1.212 
1.159 
1.111 
1,066 
1.025 
0.987 
0.952 
0.889 
0.835 
0.785 
0.741 
0.702 
0.557 
0.398 
0.305 
0.248 
0.21 1 
0.182 
0.161 
0.143 
0.129 

0377 
0577 
0.577 
0.578 
0.579 
0.580 
0.582 
0.584 
0.587 
0.590 
0.593 
0.597 
0.600 
0.603 
0.607 
0.610 
0.614 
0.617 
0.620 
0.624 
0.627 
0.634 
0.640 
0.645 
0.650 
0.657 
0.672 
0.71 1 
0.734 
0.766 
0.784 
0.790 
0.796 
0.814 
0.830 

Lorentz gas 

0.333 
0.340 
0.354 
0.367 
0.380 
0.393 
0.404 
0.41 5 
0.425 
0.434 
0.443 
0.452 
0.460 
0.467 
0.475 
0.482 
0.488 
0.495 
0.501 
0.507 
0.5 13 
0324 
0.534 
0.544 
0.553 
0.561 
0.599 
0.655 
0-696 
0.728 
0.754 
0.776 
0.794 
0.810 
0.824 

XlC 

Real gas Lorentz gas 

0.0 0.0 
0.045 0.70 
0.089 0.130 
0.134 0.185 
0.178 0.236 
0.223 0.285 
0.267 0.332 
0.311 0.377 
0.354 0.421 
0-397 0.465 
0.440 0.508 
0.482 0.550 
0.525 0.592 
0.567 0.634 
0.608 0.675 
0.650 0.716 
0.691 0.756 
0.732 0.797 
0.773 0.807 
0.813 0.877 
0.853 0.916 
0.934 0.996 
1.013 1.074 
1.094 1.159 
1.172 1.230 
1.222 1.308 
1.588 1.693 
2.335 2.453 
3.086 3.207 
3.842 3.960 
4.601 4.710 
5.380 5.460 
6.08 6.21 
6.69 6.8 1 
7.51 7.6 

TABLE 3.- COMPARISON OF THE a.C. CONDUCTIVlTlES OBTAINED IN THIS PAPER (DIRECT INTEGRATION) 
WITH THOSE OBTAINED BY BERSTElN AND ROBINSON (VARIATIONAL CALCULATION) 

o/% 
__- - 

0.0 
0.0057 
0.0179 
0.0565 
0.179 
0.565 
0.901 
1.425 
2.261 
3.559 
5.65 

Log x 
(X = 42/2 W/WJ 

ReolA 
BERNSTEIN- 

ROBINSON SHEN-CHEN 

-1rnolA 
BERNSTEIN- 
ROBINSON SHEN-CHEN 

-02 

-3.0 
-2.5 
- 2.0 
-1.5 
-1.0 
-0.8 
-0.6 
-0.4 
-0.2 

0.0 

1.734 1.734 
1.734 1.734 
1.730 1.732 
1.705 1.722 
1.605 1.608 
0.992 0.987 
0.637 0.632 
0.357 0.353 
0.183 0.179 
0.087 0.084 
0.040 0.038 

0.000 
0.004 
0.049 
0.154 
0.447 
0.816 
0.785 
0.645 
0.477 
0.329 
0.201 

0.000 
0.002 
0.408 
0.151 
0.443 
0.813 
0.787 
0.649 
0.482 
0.336 
0.204 
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1 - _ -  R,=113 a c Resistivity in (he High Frequency Limit 
;‘ 

I I , I  I 

uml 
i 

k - U, O.C. Conductivity of a Reo1 Gas 

_ _ _ _ -  o c. Conduclivity of a Lorentz Gas 

I I I I I 

05 I 1-5 2 2.5 3 w/w, 0 

FIG. 2.-A.C. conductivities. 
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X, a c  Reactance of a Real Gas - 
X, o c  Reactance of a Lorentz Gas 

- X, a c Reactance in the High Frequency Limit - 

I I ,L-U’ 

0 I 2 3 4 5 6 7 8 9 1 0  w / w ,  

FIG. 4.-A.C. reactances. 

I n  Table 1 the values of D(x)  for B = 1 are given and compared with the corre- 
sponding values for the d.c. case obtained by SPITZER Jr. and HARM. 

I n  Table 2 the resistance, the reactance and the absolute value of conductivity are 
given for various B from 0 to 10. For B > 10, one may use equation (26) to compute 
them. The error will be within 2 per cent. For B > 50 the collisions become un- 
important and equations (27)-(30) will give the correct values to within 2 per cent. 
However, there the validity of the Fokker-Planck equation already becomes question- 
able and one should use DAWSON-OBERMAN’S values instead of ours. 

In Table 3, the complex conductivity calculated in this paper are compared with 
those obtained by ROBINSON and BERNSTEIN. They showed that transport 
coefficients obtained from the Fokker-Planck equation should possess an extrema1 
nature, and proceed to calculate conductivities using the variational technique. 
Their Table 6 gives conductivities for various values of the logarithm of OJ/W, including 
very large values of cu,. In our Table 3 only those values are included for comparison 
which fall within the range of validity of the Fokker-Planck equation. The discrep- 
ancy between the two results are generally within 5 per cent. 

We should add that our results can be readily applied to the case of conductivity in 
the presence of a uniform magnetic field. The addition of the magnetic field leads to 
equations which are entirely similar to (10). If the electric field is parallel to the 
magnetic field, the conductivity is not affected. If it is perpendicular to the magnetic 
field, the conductivity becomes cli((u) = a(w + cuH),  where c i s  the function obtained 
in this paper and (oII = eH/mc. 
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